Gene therapy with adenovirus-delivered indoleamine 2,3-dioxygenase improves renal function and morphology following allogeneic kidney transplantation in rat.
نویسندگان
چکیده
BACKGROUND Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the tryptophan catabolism, has recently emerged as an important immunosuppressive enzyme involved in the regulation of both physiologic (maternal tolerance), as well as pathologic (neoplasia, autoimmune diseases, asthma) processes. Accumulating evidence points to a role for IDO in suppressing T-cell responses, thereby promoting tolerance. In the present study, we investigate the effects of adenovirus-mediated gene therapy with IDO on the acute rejection of the transplanted kidneys. METHODS The experiments were performed in a rat Fisher to Lewis acute renal rejection model. RGD modified adenovirus carrying IDO gene (RGD-AdTIDO, n = 9) or RGD modified adenovirus carrying green fluorescent protein gene (RGD-AdTL, n = 8) were injected into the renal artery of the donor kidney before transplantation. A group receiving saline (n = 8) served as control. Rats were sacrificed after 7 days. RESULTS Successful gene delivery was confirmed with real-time polymerase chain reaction and immunohistochemistry. RGD-AdTIDO significantly decreased elevated plasma creatinine (93.7 ± 18.9 µmol/l) compared to the RGD-AdTL (248.2 ± 43.6 µmol/l) and saline (228.3 ± 46.4 µmol/l) treated rats. Moreover, RGD-AdTIDO therapy diminished the infiltration of CD8+ T cells and macrophages into the graft and reduced renal interstitial pre-fibrosis. Also, it limited the up-regulation of kidney injury molecule-1, interleukin (IL)-2, IL-17 and transforming growth factor-β mRNA expression, and increased foxp3 mRNA expression compared to controls. CONCLUSIONS RGD-AdTIDO therapy improves renal function and morphology in a clinically relevant model of acute rejection.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملIndoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival.
Cells that express indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophan, suppress T cell responses and promote immunological tolerance. However, their role in solid organ transplantation is incompletely understood. We analyzed T cell responses to allogeneic dendritic cells (DCs) genetically modified to express the gene encoding IDO in vitro and IDO gene tr...
متن کاملHistone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice.
Histone deacetylase (HDAC) inhibitors are antitumor agents that also have antiinflammatory properties. However, the mechanisms of their immunomodulatory functions are not known. We investigated the mechanisms of action of 2 HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and ITF 2357, on mouse DC responses. Pretreatment of DCs with HDAC inhibitors significantly reduced TLR-induced secre...
متن کاملNuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats
Objective(s):Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regenera...
متن کاملEffects of combined genes of CTLA4Ig and IDO in post-liver transplantation immune tolerance of rats.
UNLABELLED Background and rationale for the study. Previous studies showed that CTLA4Ig and indoleamine 2,3-dioxygenase (IDO) genes played regulatory role in organ transplantation but failed to reach satisfactory effects. In this study, we constructed an adenovirus- mediated gene expressing CTLA4Ig-IDO and established rat liver transplantation models. Recipients were randomly divided into four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of gene medicine
دوره 13 7-8 شماره
صفحات -
تاریخ انتشار 2011